Nascent DNA processing by RecJ favors lesion repair over translesion synthesis at arrested replication forks in Escherichia coli.
نویسندگان
چکیده
DNA lesions that arrest replication can lead to rearrangements, mutations, or lethality when not processed accurately. After UV-induced DNA damage in Escherichia coli, RecA and several recF pathway proteins are thought to process arrested replication forks and ensure that replication resumes accurately. Here, we show that the RecJ nuclease and RecQ helicase, which partially degrade the nascent DNA at blocked replication forks, are required for the rapid recovery of DNA synthesis and prevent the potentially mutagenic bypass of UV lesions. In the absence of RecJ, or to a lesser extent RecQ, the recovery of replication is significantly delayed, and both the recovery and cell survival become dependent on translesion synthesis by polymerase V. The RecJ-mediated processing is proposed to restore the region containing the lesion to a form that allows repair enzymes to remove the blocking lesion and DNA synthesis to resume. In the absence of nascent DNA processing, polymerase V can synthesize past the lesion to prevent lethality, although this occurs with slower kinetics and a higher frequency of mutagenesis.
منابع مشابه
P . C . Hanawalt RecQ and RecJ process blocked replication forks prior to the resumption of replication in UV - irradiated Escherichia coli
The accurate recovery of replication following DNA damage and repair is critical for the maintenance of genomic integrity. In Escherichia coli, the recovery of replication following UV-induced DNA damage is dependent upon several proteins in the recF pathway, including RecF, RecO, and RecR. Two other recF pathway proteins, the RecQ helicase and the RecJ exonuclease, have been shown to aect the...
متن کاملNucleotide excision repair or polymerase V-mediated lesion bypass can act to restore UV-arrested replication forks in Escherichia coli.
Nucleotide excision repair and translesion DNA synthesis are two processes that operate at arrested replication forks to reduce the frequency of recombination and promote cell survival following UV-induced DNA damage. While nucleotide excision repair is generally considered to be error free, translesion synthesis can result in mutations, making it important to identify the order and conditions ...
متن کاملRecBCD and RecJ/RecQ initiate DNA degradation on distinct substrates in UV-irradiated Escherichia coli.
After UV irradiation, recA mutants fail to recover replication, and a dramatic and nearly complete degradation of the genomic DNA occurs. Although the RecBCD helicase/nuclease complex is known to mediate this catastrophic DNA degradation, it is not known how or where this degradation is initiated. Previous studies have speculated that RecBCD targets and initiates degradation from the nascent DN...
متن کاملRecO acts with RecF and RecR to protect and maintain replication forks blocked by UV-induced DNA damage in Escherichia coli.
In Escherichia coli, recF and recR are required to stabilize and maintain replication forks arrested by UV-induced DNA damage. In the absence of RecF, replication fails to recover, and the nascent lagging strand of the arrested replication fork is extensively degraded by the RecQ helicase and RecJ nuclease. recO mutants are epistatic with recF and recR with respect to recombination and survival...
متن کاملCellular characterization of the primosome and rep helicase in processing and restoration of replication following arrest by UV-induced DNA damage in Escherichia coli.
Following arrest by UV-induced DNA damage, replication is restored through a sequence of steps that involve partial resection of the nascent DNA by RecJ and RecQ, branch migration and processing of the fork DNA surrounding the lesion by RecA and RecF-O-R, and resumption of DNA synthesis once the blocking lesion has been repaired or bypassed. In vitro, the primosomal proteins (PriA, PriB, and Pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 103 24 شماره
صفحات -
تاریخ انتشار 2006